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In this study we concern ourselves with the flow of  a liquid in a nozzle when bubbles of  dissolved gas form. The flow 

of a boiling liquid in channels was considered in [1, 2]. The flow of a liquid in a nozzle when individual gas bubbles appear 

in the stream was studied theoretically and experimentally in [3]. 

1. We consider the flow of a gas-saturated liquid at a pressure Ps in a varying-area channel. Because the pressure drops 

to p < Ps the liquid may boil (a gas-vapor phase may form) in the stream because of dynamic processes. The following 

assumptions were made when constructing mathematical model in the quasi-one-dimensional approximation. A gas phase is 

formed only because of the literature of dissolved gas, accompanied by diffusion processes (the liquid is assumed to be cold 

and thus the partial vapor pressure of the liquid in the gaseous medium is ignored). Dissolved gas is released at impurity 

particles with an initial concentration n o . Moreover, the phase velocities are equal and the forces of the friction of  the stream 

against the channel wall is neglected. The temperature of  the system is constant at T O . 

With the above assumptions the equations of conservation of mass for the liquid phase (parameters with a subscript) 

(i = /) in the zone of two-phase flow have the form [1, 2] 
ap y F  Op sF ~otuF 

aPtF + - -  = - M F ,  + = n J F  
at az at az (1.1) 

4 3 
( p , = p ~ a , ( l =  l , g ) , a  t + a t = l , a  s = ' ~ t a n ) ,  

where F = F(z) is the cross-sectional area of the channel; u is the velocity; pi ~ and Pi are the true and average densities of the 

phases; et i is the cubic content; a and n are the bubble radius and the number of bubbles per unit volume; and J is the rate of 

formation of  the gas phase per inclusion. Combining Eqs. (I. 1), we obtain the equation of conservation of  mass for a two-phase 

mixture as a whole: 

ap F apuF 
+ ~ = 0 ( p  = p , + p ) .  (1.2) 

at az 

Moreover, we must write the equations of conservation of  mass for the gas and liquid (solvent) dissolved in the liquid. 

The parameters pertaining to the liquid (solvent) and dissolved gas have a second subscript j = l, g. The equations of 

conservation of mass for the components are then written as 

aP~r + aP~(ouu = O, dP'(t)F + aP~(t)uF = -- n E F  
at az Ot az 

(P IO') o = + o o o 
= Plo')al ' Pt Pt(O Pl(~)' Pt = Pn(O + Ply))" 

I f  we introduce the mass Concentrations of the components 

(1.3) 

o o 
ko~ = k,o~ = P,o~/P, - P ,o /P ,  U = t, g),  

then on the basis of Eqs. (1.1) and (1.3) we have 

p, dkct) = -ndk( , ) ,  = 1 
d t  k(o - k~). 

(1.4) 
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The equation of conservation of the number of bubble inclusions when they do not subdivide or stick together is 

Then from (1.2) and (1.5) we easily obtain 

whence 

On.F anuF 
- - +  - - =  0 .  ( 1 . 5 )  0t Oz 

= o ,  

n % 
- o - const. (1.6) 

P P~o 

Here p to o and n o are the density of the initial liquid and the number of impurity particles per unit volume of  the initial liquid. 

The equation of conservation of momentum in the one-velocity approximation, neglecting the hydraulic resistance of 

the channel wails, has the form 

~ul~ + g~ e = - F a--~p. (1.7) 
at Oz az 

The equation of  state of the liquid is taken in the acoustic approximation and the gas is assumed to be calorically 

perfect: 

P = Po + r (P? - P~)'  p = p~Rr (7" = r , )  (1.8) 

(R is the gas constant). 
We assumed that the mass concentration of the dissolved gas for the saturated state satisfies Henry's  law. 

To complete the above equations we must give an expression for the gassing rate. For a gas stream diffusing toward 

the interface we assume that 

I = 4~a2DShp ~ kr :a kr (1.9) 

where D is the diffusion coefficient; Sh is the Sherwood number; k(g)a is the gas concentration as the interface that satisfies 

the saturation condition. In accordance with Henry's law we then write 

k ~  = (7,o ((7 = k~o/p  ) .  

If the depletion of the dissolved gas in the carrier phase is ignored (k(g) = k(g)O ), then Eq. (1.9) is rewritten as 

J = 4~ra2DShp~ (p" 
p)/p, 

. ( 1 .1o )  

To assign the dimensionless mass-transfer coefficient Sh we assume that bubble growth due to the liberation of  dissolved gas 

is described by the self-similar solution [2]. On the basis of  the results of the self-similar solution of  the problem of diffusion 

growth of bubbles in a liquid supersaturated with dissolved gas we write a relation for the Sherwood number: 

12 [ l(6~a ) ~ o sh  = ~Ja  l + -~ + , .ra = P,o (k~) - k~,~,)/p~. 

2. For a steady-state flow Eq. (1.1) becomes 

dg, Va 
- -  = - n / F ,  = n / F ,  

d z  d'~ 
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whereby it follows that 

f-0  *_i o 
"P ~", , ~ + P;% d= ) + P,P, W = ~ q -  p , ~ : -  

From the equation of mass (1.2) for the entire mixture as a whole we obtain 

pua r = G = const .  

We recast the equation of conservation of momentum (1.7) with allowance for (2.1) in the form 

du dp 
e.a+ ~ = o. 

From (2.1) and (2.3), using the equation of state (1.8), we find 
2 

- 1  

(a (l/p~ 1/o~.-,, c '~' 

(2 .1)  

(2.2) 

(2.3) 

(2.4) 

where C is the local "frozen-in" speed of sound. Neglecting the compressibility of the carrier liquid ( e l  = oo) and noting that 
in the process under consideration usually pg0 < < plO and, therefore p = P P a t  the local speed of sound is given by 

tat" 
With the above assumptions and further assuming that the volume gas content at the nozzle inlet is zero (ag o = 0), 

on the basis of (1.6) and (2.2) we write 

n 

I -a - %' (I - at)uF = uuF 0. (2.5) 
t 

Here and below the subscript 0 pertains to the values of parameters at the nozzle inlet. Hence, taking into account the relation 

4 ~a3rl~ 

we obtain an expression for c~g, n, and a in terms of the flow velocity: 

= - u - " - P ' n =  n o u - - ' 7 , a =  - 1 / ' ~ ' ~ n  o. 

Considering these expressions for the effect of gassing on the flow, we have 

Q = 6.n:2n - D Sh Ja. 

Equation (1.4) for the variation of the concentration of the dissolved gas can be reduced to 

l, dz = - 6ad'n~ " ~ u  -- 1 . D Sh  Ja. 

On the basis of the above equations we make a qualitative analysis of the discharge of a gas-saturated liquid through a nozzle. 

Gassing begins in a cross section where the pressure in the flow reaches Ps. The parameters and coordinates of  this cross 

section have a subscript s. Let us consider the asymptotic behavior of the growth of the bubble radius near the given cross. 

Frornthe second equation in (1.1) with allowance for (1.5) it follows that 
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Near the cross section z = z s from this equation, using (1.10), we get the approximation 

d a  P~ P, - P 

As p --, Ps we have Sh -- 2. For the difference Ps - P near the cross section where gassing begins we write 

(2.6) 

Substituting (2.7) into (2.6), we obtain 

Ps .r (2.7) 

,at ,at s 1 d F  

This relation should be used in calculations from stationary equations upon passage through the cross section z = z s. Moreover, 

the equation has a trivial solution a = 0, which corresponds to the absence of gassing (according to this solution, below the 

cross section z s the gas-saturated liquid behaves as if it were in a "metastable" state). 

The qualitative picture of the discharge of  the system under consideration is similar to that of the discharge of boiling 

liquid through a nozzle [2]. Subsonic discharge may take place (u < C) under specific conditions at the nozzle inlet and exit. 

Two fundamentally different critical discharge regimes are possible, depending on the properties of the gas-saturated 

liquid and the nozzle geometry. In the first case the transition from subsonic flow (u < C) to supersonic flow (u > C) occurs 

at the point with longitudinal coordinate z, < L). Unlike the case of the flow of an ideal gas, when the throat (critical cross 

section) z, is in the minimum cross section of the nozzle, for the flow of a gas-saturated liquid the throat is in the divergent 

section of  the nozzle. This is because the effect of gassing on the flow is always positive (Q > 0). For the second regime, 

when the point z,  lies outside the channel (z, > L), and integral line for which the flow velocity in the nozzle exit cross section 

(z = L) is equal to the speed of sound (u = C). 
For gas-saturated liquids with gassing the critical flow rates corresponding to the given conditions for the pressure at 

the nozzle inlet and exit can be determined only by integration of the system of differential equations of  motion of  the medium. 

Moreover, this procedure enables us to determine the coordinate z,  of the throat and to take into account the effect of  the 

"history" of the flow on the values of the parameters in the throat. 
Let us consider the flow of a gas-saturated liquid where gassing (or dissolution) occurs so rapidly in the region of two- 

phase flow that the pressure in the stream follows the saturation pressure corresponding to the instantaneous concentration of 

dissolved gas (p = Ps). If  the change in the instantaneous concentration of  dissolved gas is ignored, then the region of two- 

phase flow in the stream is constant (dp/dz = 0). This scheme of  flow corresponds to the formal solution of  the system (2.4), 

when the number of  nuclei is infinite (n o = ~ ) .  Then from the equation of conservation of momentum we obtain 

du 
p . - ~ z  = O, 

and hence 

u = u = c o a s t ,  p = p, = c o n s t .  (2.8) 

From the equation of  conservation of mass (2.5) with allowance for (2.8) we have 
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a = I - F / F ,  (2.9) 

where F s is the section where gassing begins. 

In the region of two-phase flow, therefore, the volume content of the gas phase is determined unambiguously by the 

instantaneous value of the channel cross section. Since the volume content O~g is a nonnegative parameter (~g _> 0), the cross 

section where the gassing begins should coincide with the nozzle throat (F'(z) = 0); henceforth F s expresses the area of the 

minimum nozzle cross section. For the scheme of two-phase flow under consideration (p = Ps = const) the local speed of 

sound in the stream is zero (C = 0, C 2 = dp/dp), i.e., the flow corresponding to the solutions of (2.8), (2.9) formally is 

supersonic. If the pressure at the nozzle exit Pe is lower than the pressure when gassing begins (Pc < Ps), then the flow from 

the nozzle throat to the flow at the exit is described by the solution obtained. The contraction section of the flow is described 
by equations for an incompressible liquid, from which it follows that 

P t Uo Fo 
P =  P0 + T  I - , u = u o 7 .  (2.10) 

For the critical discharge flow, determined by the condition for the pressure in the nozzle throat (F = Fm) to become 

equal to the pressure at which gassing begins (p = Ps) we obtain an expression for the critical flow rate: 

/p z(P~ - p _  
q ---- F~176 = F'us' u~ = ~ [ ~ 7 )  ~ - I ] "  

When the pressure Pe at the nozzle exit is higher than Ps(Pe > Ps), for the diffusion section of  the nozzle we can 

construct a discontinuous solution, changing the flow regime described by Eqs. (2.8) and (2.9) into the regime of  one-phase 

flow of an incompressible liquid. The values of the parameters corresponding to the one-phase state behind the shock wave 

is labeled by the subscript f. Then the Bernoulli integral and the integrals of mass, written for an incompressible liquid, are 

valid for the flow behind the shock wave ((~g = 0): 

U2 P Ue2 Pe 2 ~-  -OId..F 
- - + - ' 6 = 2 + 2  p, ~ = uI+2 P,~ = P ~  f (2.11) 

Furthermore, at the shock wave we have the equations of conservation of mass and momentum: 

p,o(1 - %)~, = p,~ I ,  p;+ p,~ (1 - %)~, = pl + g,,~. (2.12) 

From this, with allowance for (2.11), we obtain an expression for the volume content of the gas phase agf al'lead of the shock 

wave as a function of  the pressure Pe at the nozzle exit: 

c t a =  1 - -  P ' - P "  1 -  . 
PO -- Ps 

The area Ff and coordinate zf of the cross section as well as the pressure behind the shock wave can be determined 
from the equations 

= E / ( I  - %. ) ,  FCz,.) = p;..,,,, = .,,, + ,o,~ - , - , p % u ,  ~, (2.13) 

which follows from (2,12). 

For the pressure and velocity distributions behind the shock wave (z > zf) from (2.11) and (2.13) we obtain 
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Figure 1 schematically represents the above solutions, corresponding to a fixed inlet pressure. Line 1 corresponds to 

the case where the nozzle exit pressure is pc' and the pressure Ps at which gassing begins is not reached in the channel; hence 

the flow is one-phase in the entire nozzle and the distribution of the parameters is found from (2.10). For line 2 the nozzle exit 

pressure is equal to Ps(Pe" = Ps), the flow is one-phase up to the cross section Fs(0 < z < Zs) and two-phase after that cross 
section (z z < z < .  L). Lines 2 and 3 correspond to the critical discharge. In contrast to the case for line 2, Pc" > Ps for line 

3. Lines 2 and 3 coincide up to the cross section with coordinate z = zf. In the cross section z = zf the flow described by lines 

2 jumps to a one-phase regime for which the pressure is Pc" at the exit cross section. 

When an equilibrium scheme is used to describe the flow of a gas-saturated liquid in the general case (p = Ps) the 

pattern of the parameter distribution in the nozzle is completely analogous to that of the flow of  gas streams. The speed of 

sound is determined from 

,,o__..:~,~ ~ (l ,~,), x P~ ~c,~o~ c ' = x , , p , , p  = p ,  - = , 
Pt ~)o 

3. As mentioned above, the construction of a solution of stationary equations describing the flow of  gas-saturated 

liquids in a nozzle in a regime of critical discharge poses some difficulties because of the formation of  sonic lines and shock 

waves. The calculations, therefore, were carried out on the basis of nonstationary equations by the f'Lxing method. The solution 

was implemented numerically by the Laz -Bendor f  method. Artificial diffusion was introduced into the calculations in order 

to smooth out the resulting jumps in the laws of  conservation of  mass and momentum [4]. The stationary equations make it 

possible to construct a solution for a subcritical regime of  discharge and the nonstationary equations, for both critical and 

subcritical discharges. Accordingly, the fixing method was tested by comparing the solutions obtained from the stationary and 

nonstationary equations for the subcritical discharge regime. 

The fixing method was tested for critical discharge regimes by varying the initial conditions. Two forms of conditions 

were considered: 1) there is no flow (u(z) = 0), the pressure is the same everywhere (p(z) = const), and at a certain moment 

the nozzle is depressurized, i.e., the pressure at the exit drops (p(L) = Pc); 2) an initial velocity is given at the nozzle inlet 

and the pressure distribution is found from the Bernoulli integral, with the exit pressure dropping at a certain moment. The 

initial density of the mixture was assumed to be equal to the density of  the liquid and the size of  the nuclei, which are discussed 

below, was determined against the background of  the pressure obtained. The solutions for the two cases coincided completely. 

A number of nuclei n o of  initial size a o were introduced into the nozzle inlet. The size was chosen so that the time of 

self-similar growth of  bubbles of this size would be substantially shorter than the time for which they remain in the nozzle (t D 

< < t.); the solution thus did not depend on the initial nucleus size. The calculations showed that Ja - 102-103. This can be 

a basis for estimating the time of self-similar growth t D -- ao2/2DJa 2 for Ja > > 1. 

On the basis of  the equations given in See. 1 we calculated the discharge of carbonated water through a nozzle. As 

already mentioned, the method of calculation based on noustationary equations can be used to find the distribution of  the 
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parameters (pressure, flow velocity, speed of sound, gas saturation, and volume content of phases) along the entire length of 

the nozzle for both critical and subcritical discharge of a gas-filled liquid. 

Figure 2 shows the stationary distribution of the average pressure p in the flow, the instantaneous pressure Ps of liquid 

saturation or the gas saturation k(g), the flow velocity u, the speed of sound C, and the volume content Otg of the gas phase in 

the critical discharge regime. The pressure is Po = I MPa at the nozzle inlet and Pr = 0.1 MPa at the exit. The following 

values were assumed for the parameters determining the physical properties of the liquid and the dissolved gas at the nozzle 
inlet: Plo 0 = 103 kg/m 3, C l = 1500 m/sec, k(g)0 = 10 - 2 ,  Ps =0.6 MPa, n o = 1013 m -3, a 0 = 10 -5  m, D = 10 -9  m2/sec, 

and Pgs ~ = 1.815 kg/m3~ As is seen from Fig. 2, near the beginning of the diffusion section of the nozzle the flow velocity 

reaches the speed of sound (u - 30 m/sec) in a mixture. Behind this cross section is a section where the flow is supersonic. 

Then in some cross section the flow abruptly becomes subsonic. Two zones can be distinguished in the supersonic flow portion 

of the nozzle: 1) a short section where the pressure drops abruptly; 2) a portion where the pressure drops slowly. The flow 

velocity increases further over the entire supersonic flow portion. At the point of transition to the subsonic regime the pressure 

increases abruptly, becoming roughly equal to the exit pressure Pc" In the supersonic flow section because of low pressure in 

the mixture the liquid is degassed rapidly and the concentration of dissolved gas drops sharply. Degassing is slower in the exit 

section of the nozzle, where the flow is already subsonic and the pressure in the mixture has risen. 

Figure 3 illustrates the effect that the nozzle exit pressure has on the pressure and concentration distribution of the 

dissolved gas. Lines 1 and 2 correspond to P0 = 0.2 and 1.5 MPa A rise in the exit pressure causes the supersonic-subsonic 

transition section to drift toward the nozzle exit, i.e., the zone of supersonic flow becomes longer. This is because the higher 

exit pressure results in a higher flow velocity. At some exit pressure (P0 - 3.0 MPa) this section is beyond the nozzle exit. 

Let us trace the effect of  the inlet pressure on the concentration of the dissolved gas (or the instantaneous saturation 

pressure). At high concentrations of dissolved gas, when the saturation pressure of the liquid is substantially higher than the 

exit pressure (Ps > Pc), the inlet pressure does not have effect on the exit pressure of gas saturation. The reason for this is that 

degassing occurs in the zone of supersonic flow as well as in the zone of subsonic flow. The degassing rate, determined by 

the difference of the instantaneous saturation pressure and the pressure in the flow (Ps - P), is roughly the same because ps(Z) 

is several times p(z) along the entire nozzle. For low concentrations (Fig. 3) (Ps -< Pc) gassing occurs only in the zone of 

supersonic flow. An increase in the exit pressure, therefore, causes greater degassing of the liquid since the degassing zone 

is enlarged. 

Figure 4 shows the graphs of the distribution of  the pressure (solid lines) in the flow and the gas saturation (dashed 

lines) when the nozzle exit pressure varied, with constant inlet pressure P0 = 0.6 MPa. The exit pressure was Pe = 0.1 MPa 

in one case and Pe = 0.2 MPa in the other (lines 1 and 2). As follows from the graphs, a change in the exit pressure does not 
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affect the parameter distribution to the point of supersonic- subsonic transition. We also see that the decrease in exit pressure 
causes this point to drift toward the nozzle exit. 

Figure 5 shows the graphs of the distribution of the pressure (solid lines) and the concentration of dissolved gas (dashed 
lines) for nozzles with different diffuser cone angles ~ = 15 and 23 ~ (lines 1 and 2). The graphs indicate that an increase in 

the diffuser cone angle results in a somewhat lower pressure in the zone of supersonic flow. This is because the large diffuser 
cone angle leads to a large acceleration of the flow and thus a drop in pressure. Moreover, as the diffuser cone angle increases 
the supersonic-subsonic transition moves toward the throat. In other words, a reduction of the cone angle extends the zone of 
supersonic flow. 
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